direct product, metabelian, supersoluble, monomial, A-group
Aliases: C22×C13⋊C6, D26⋊3C6, C26⋊(C2×C6), C13⋊C3⋊C23, D13⋊(C2×C6), C13⋊(C22×C6), (C2×C26)⋊4C6, (C22×D13)⋊3C3, (C2×C13⋊C3)⋊C22, (C22×C13⋊C3)⋊2C2, SmallGroup(312,49)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — C13⋊C3 — C13⋊C6 — C2×C13⋊C6 — C22×C13⋊C6 |
C13 — C22×C13⋊C6 |
Generators and relations for C22×C13⋊C6
G = < a,b,c,d | a2=b2=c13=d6=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c10 >
Subgroups: 388 in 64 conjugacy classes, 37 normal (8 characteristic)
C1, C2, C2, C3, C22, C22, C6, C23, C2×C6, C13, C22×C6, D13, C26, C13⋊C3, D26, C2×C26, C13⋊C6, C2×C13⋊C3, C22×D13, C2×C13⋊C6, C22×C13⋊C3, C22×C13⋊C6
Quotients: C1, C2, C3, C22, C6, C23, C2×C6, C22×C6, C13⋊C6, C2×C13⋊C6, C22×C13⋊C6
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(1 27)(2 31 4 39 10 37)(3 35 7 38 6 34)(5 30 13 36 11 28)(8 29 9 33 12 32)(14 40)(15 44 17 52 23 50)(16 48 20 51 19 47)(18 43 26 49 24 41)(21 42 22 46 25 45)
G:=sub<Sym(52)| (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,27)(2,31,4,39,10,37)(3,35,7,38,6,34)(5,30,13,36,11,28)(8,29,9,33,12,32)(14,40)(15,44,17,52,23,50)(16,48,20,51,19,47)(18,43,26,49,24,41)(21,42,22,46,25,45)>;
G:=Group( (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,27)(2,31,4,39,10,37)(3,35,7,38,6,34)(5,30,13,36,11,28)(8,29,9,33,12,32)(14,40)(15,44,17,52,23,50)(16,48,20,51,19,47)(18,43,26,49,24,41)(21,42,22,46,25,45) );
G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(1,27),(2,31,4,39,10,37),(3,35,7,38,6,34),(5,30,13,36,11,28),(8,29,9,33,12,32),(14,40),(15,44,17,52,23,50),(16,48,20,51,19,47),(18,43,26,49,24,41),(21,42,22,46,25,45)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 6A | ··· | 6N | 13A | 13B | 26A | ··· | 26F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | ··· | 6 | 13 | 13 | 26 | ··· | 26 |
size | 1 | 1 | 1 | 1 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | ··· | 13 | 6 | 6 | 6 | ··· | 6 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 6 |
type | + | + | + | + | + | |||
image | C1 | C2 | C2 | C3 | C6 | C6 | C13⋊C6 | C2×C13⋊C6 |
kernel | C22×C13⋊C6 | C2×C13⋊C6 | C22×C13⋊C3 | C22×D13 | D26 | C2×C26 | C22 | C2 |
# reps | 1 | 6 | 1 | 2 | 12 | 2 | 2 | 6 |
Matrix representation of C22×C13⋊C6 ►in GL8(𝔽79)
78 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 78 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
78 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 63 | 77 | 64 | 77 | 63 | 78 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
55 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 55 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 61 | 46 | 77 | 63 | 60 | 62 |
0 | 0 | 16 | 18 | 16 | 1 | 17 | 17 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 17 | 17 | 1 | 16 | 18 | 16 |
G:=sub<GL(8,GF(79))| [78,0,0,0,0,0,0,0,0,78,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[78,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,63,1,0,0,0,0,0,0,77,0,1,0,0,0,0,0,64,0,0,1,0,0,0,0,77,0,0,0,1,0,0,0,63,0,0,0,0,1,0,0,78,0,0,0,0,0],[55,0,0,0,0,0,0,0,0,55,0,0,0,0,0,0,0,0,1,61,16,0,0,17,0,0,0,46,18,0,1,17,0,0,0,77,16,0,0,1,0,0,0,63,1,0,0,16,0,0,0,60,17,1,0,18,0,0,0,62,17,0,0,16] >;
C22×C13⋊C6 in GAP, Magma, Sage, TeX
C_2^2\times C_{13}\rtimes C_6
% in TeX
G:=Group("C2^2xC13:C6");
// GroupNames label
G:=SmallGroup(312,49);
// by ID
G=gap.SmallGroup(312,49);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-13,7204,244]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^13=d^6=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^10>;
// generators/relations